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We propose a variant of the voter model by introducing the social diversity in the evolution process. Each
individual is assigned a weight that is proportional to the power of its degree, where the power exponent � is
an adjustable parameter that controls the level of diversity among individuals in the network. At each time step,
a pair of connected individuals, say i and j, are randomly selected to update their opinions. The probability pi

of choosing is opinion as their common opinion is proportional to is weight. We consider the scale-free
topology and concentrate on the efficiency of reaching the final consensus, which is significant in character-
izing the self-organized systems. Interestingly, it is found that there exists an optimal value of �, leading to the
shortest consensus time. This phenomenon indicates that, although a strong influence of high-degree individu-
als is helpful for quick consensus achievement, over strong influence inhibits the convergence process. Other
quantities, such as the probability of an individual’s initial opinion becomes the final opinion as a function of
degree, the evolution of the number of opinion clusters, as well as the relationship between average consensus
time and the network size, are also studied. Our results are helpful for better understanding the role of degree
heterogeneity of the individuals in the opinion dynamics.
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I. INTRODUCTION

In recent years, a large class of interdisciplinary problems
has been successfully studied with statistical physics meth-
ods, in particular those related to the characterization of the
collective social behavior of individuals, such as opinion for-
mation �1,2�, the spreading of rumor or disease �3–6�, the
language dynamics �7�, etc. The study of opinion dynamics
has attracted much attention in the physics community and
many models have been proposed to describe the processes
of opinion formation �8,9�, such as the majority rule model
�10–12�, the voter model �VM� �13�, and the bounded-
confidence model �14�, etc. Given the recent widespread in-
terest in complex networks �15,16�, dynamical progresses
described by these models have been extensively studied on
various networks �17–34�. Some models of opinion forma-
tion display a disorder-order transition �17,18,24�, from a
regime in which opinions are arbitrarily diverse to one in
which most individuals hold the same opinion. Other models
focus the emergence of a global consensus, in which all
agents share the same opinion �11,21�.

Diversity in wealth and social status is present not only
among human but also throughout the animal world. Due to
the existence of social diversity, the impacts of different in-
dividuals are different. For example, leaders may have stron-
ger influence than others and their opinions may be followed

more frequently. It has been shown that the social diversity is
an important factor in opinion �35,36� or other dynamics
�37–39�. In Ref. �35�, Galam considered heterogeneous be-
liefs in the making of public opinions. In Ref. �36�, Guan et
al. studied the effects of inhomogeneous influence of indi-
viduals on an order-disorder transition in opinion dynamics.

In this paper, we explore how the social diversity affects
the emergence of global consensus in opinion dynamics. For
this purpose, a variant of the voter model will be considered.
Let us briefly review the VM �13�. The VM evolution con-
sists of sequentially randomly choosing a voter �one node�
who will adopt the state of a random neighbor. In our modi-
fied VM, the two selected neighboring individuals compete
for becoming the dominator and the individual with stronger
social influence has larger probability to impose its opinion
to the other individual.

The paper is organized as follows. In Sec. II, the modified
voter model is described. Results and analysis are introduced
in Sec. III. The paper is concluded in Sec. IV.

II. MODEL

Initially, each individual holds one of G��2� opinions
with equal probability. G is set to 2 in the original VM,
however, the optional choices are usually more than 2 in
many realistic situations, such as the selection of city for
Olympic games, etc. For this reason, in the present study we
relax the value of G to arbitrary integers. Each individual i is
assigned a weight ki

�, where ki is the degree of i and � is an
adjustable parameter, named the diversity parameter. Here
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the weight can be considered as the strength of social influ-
ence. At each time step, a pair of connected individuals are
randomly selected to update their opinions. The two indi-
viduals, say i and j, will adopt one of their opinions as the
common opinion. The probability pi of choosing is opinion
as the common opinion is proportional to is weight:

pi =
ki

�

ki
� + kj

� . �1�

If ��0��0�, the higher-degree �lower-degree� individual
has larger weight of social influence and its opinion therefore
has larger probability to be selected as the common opinion.
In the case of �=0, two selected individuals’ opinions have
the equal probability to become the common opinion.

III. RESULTS AND ANALYSIS

In the following simulations, we assume that individuals
are situated on nodes of a Barabási-Albert �BA� scale-free
network �40� without special mention. The BA network
model can be constructed as follows. Starting from m0 nodes,
a new node with m edges is added at each time and prefer-
entially attached to m existing nodes with probability propor-
tional to the degrees of existing nodes. The average connec-
tivity of the network �k�=2m and the degree distribution
obey a power-law form nk�k−�, with the exponent �=3.

The efficiency of reaching the final consensus can be
measured by the consensus time. Figures 1–3 show the con-
sensus time Tc as a function of � for different network size
N, the number of initial opinions G, and the average connec-
tivity �k�. One can see that there exists an optimal value of �,
hereafter denoted by �opt, resulting in the shortest consensus
time. Figure 1 shows that Tc increases as the network size N
increases, while �opt seems to be independent of N. Figure 2
shows that Tc increases very slowly as the number of initial

opinions G increases and �opt is found to be independent of
G. Figure 3 displays that Tc decreases as the average connec-
tivity �k� increases and �opt increases as �k� increases. More-
over, from Figs. 1–3, one can observe that the value of �opt is
positive and no less than 2, indicating that strong influence of
the high-degree individuals �but only to an appropriate ex-
tent� can best favor the achievement of consensus.

According to Eq. �1�, for � greater than zero, the higher-
degree individual’s opinion is more likely to be chosen as the
common opinion. Hence as � grows, the opinions held by
the higher-degree individuals are easier to spread in the net-
work. In fact, one can see in Fig. 4 that the initial opinions of
higher-degree individuals have larger probability to become
the final opinion as � increases. Besides, the average degree

FIG. 1. �Color online� Consensus time Tc as a function of � for
different network size N. The inset shows the optimal values �opt as
a function of N. The average connectivity of the BA network �k�
=6 and the number of initial opinions G=2. Each data point is
obtained by averaging over 50 different network realizations with
50 runs for each realization.

FIG. 2. �Color online� Consensus time Tc as a function of � for
different number of initial opinions G. The inset shows the optimal
values �opt as a function of G. The average connectivity of the BA
network �k�=6 and the network size N=2000. Each data point is
obtained by averaging over 50 different network realizations with
50 runs for each realization.

FIG. 3. �Color online� Consensus time Tc as a function of � for
different average connectivity �k�. The inset shows the optimal val-
ues �opt as a function of �k�. The BA network size N=4000 and the
number of initial opinions G=2. Each data point is obtained by
averaging over 50 different network realizations with 50 runs for
each realization.
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of individuals whose initial opinions become the final opin-
ion also increases as � increases. In scale-free networks a
few nodes have high degrees, while most nodes are of low
degrees. The opinion dynamics is proceeded by formation of
some big opinion clusters around the high-degree individu-
als, and within each cluster the individuals share a common
opinion. Through the competition of different opinion clus-
ters, one big cluster will invade the others and finally domi-
nate the system with a global consensus. Note that the core
of a cluster usually is a high-degree individual, for very high
value of �, the cluster becomes very steady due to the very
strong influence of the core. As a result, the merging of dif-
ferent clusters become very difficult for too large �, leading
to longer consensus time. Taken together, we can expect that
the shortest consensus time would be realized at moderate
value of �. This is what we have observed in Figs. 1–3.

Figure 5 shows the evolution of the number of opinion
clusters Ncl for different values of �. One can see that as the
time evolves, Ncl eventually decreases to 1. For �=0, Ncl
decreases much more slowly, compared with �=3 and 10,
indicating that it is hard to form big opinion clusters when �
is small. For �=10, Ncl decreases a little faster than the case
of �=3 in the early stage. However, when only a few clus-
ters remain in the system, for example, Ncl�10, the system
takes much longer time to reach the final consensus than that
of �=3, indicating that the competition among big opinion
clusters becomes furious.

Then we investigate the scaling behavior of the consensus
time with the network size for different values of �. As
shown in Fig. 6, Tc scales as N� with � depending on the
value of �. In particular, the optimal �=3 results in the low-
est value of �, corroborating our previous findings.

In the above simulations, we consider the modified VM
on BA scale-free networks. Note that the exponent of the
power-law degree distribution is fixed at 3 for BA networks.
While many real networks display different values of the
exponent �15�. To understand how the exponent of the degree

distribution affects the modified VM, we consider the grow-
ing network with redirection �GNR� �41�. The GNR is built
by adding nodes sequentially, where each new node attaches
either to a randomly selected node with probability 1−r or to
the ancestor of this target with probability r. We chose the
out degree of each node to be two, and redirection was ap-
plied to each outgoing link of the new node. The GNR has a
power-law degree distribution nk�k−�, with the exponent �
=1+1 /r in the range �2,�� as r is varied between 0 and 1.

From Fig. 7, one can observe that there still exists an
optimal value of �, leading to the shortest consensus time on
the GNR. As the exponent of the power-law degree distribu-
tion � increases, the network becomes more homogeneous
and needs higher value of � to provide enough influence for
high-degree nodes. Thus the optimal value of � increases as
the exponent � increases.

FIG. 4. �Color online� The probability P�k� of an individual—
whose initial opinion becomes the final opinion—as a function of
degree k for different values of �. The inset shows the dependence
of the average degree �kini� of individuals—whose initial opinions
become the final opinion—on �. The BA network size N=1000, the
average connectivity �k�=4, and the number of initial opinions G
=N=1000. The data are obtained by averaging over 100 different
network realizations with 50 runs for each realization.

FIG. 5. �Color online� The number of opinion clusters Ncl versus
rescaled time t /N for different values of �. The average connectiv-
ity of the BA network �k�=6, the network size N=2000 and the
number of initial opinions G=N=2000. Each data point is obtained
by averaging over 50 different network realizations with 50 runs for
each realization.

FIG. 6. �Color online� Consensus time Tc versus the network
size N for different values of �. The average connectivity of the BA
network �k�=6 and the number of initial opinions G=2. Tc scales as
N�, �=2.02,2.00,1.57,1.69, respectively, correspond to �=
−0.5,0 ,3 ,6. Each data point is obtained by averaging over 50 dif-
ferent network realizations with 50 runs for each realization.
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IV. CONCLUSIONS

In conclusion, we have studied a variant of the voter
model with respect to the social diversity on scale-free net-
works. The diversity of individuals is realized by assigning a
weight—which represents the strength of social influence—
to each individual, and the probability of choosing the opin-
ion of one of two selected individuals as their common opin-
ion is proportional to this individual’s weight. A tunable
parameter � is introduced to govern the weight based on the
degree of individuals. The most interesting result is that there
exists an optimal value of the parameter � that leads to the
fastest consensus. The optimal value of � increases as the
average connectivity and the exponent of the power-law de-
gree distribution increase while is almost independent of the

network size and the number of initial opinions. These re-
sults demonstrate that a proper proportion of the individuals’
influential weights to their interaction degrees can best ben-
efit the achievement of global consensus, and high-degree
individuals may play both positive �being properly assigned
higher weights� and negative �being assigned over weights�
roles in the opinion dynamics. We have qualitatively ex-
plained such nonmonotonic behavior in terms of the prob-
ability of an individual whose initial opinion becomes the
final opinion as a function of degree and the evolution of the
number of opinion clusters. Furthermore, we have investi-
gated the scaling behavior of the consensus time with the
network size. Since the social diversity is widely existed in
the human society and the animal world, our work may be of
practical significance.

Note Added. Recently, the referee pointed to us that a very
similar extension of the voter model has been proposed in-
dependently in a recent work �42�. In this paper, Schneider-
Mizell and Sander mainly studied the scaling of consensus
time. In our work, we find that there exists an optimal value
of �, leading to the shortest consensus time. We also study
how the optimal value of � changes with different network
topologies. All together Ref. �42� and our work have pro-
vided a more comprehensive understanding of the impact of
social diversity on opinion dynamics.
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